Reduced space hidden Markov model training
نویسندگان
چکیده
MOTIVATION Complete forward-backward (Baum-Welch) hidden Markov model training cannot take advantage of the linear space, divide-and-conquer sequence alignment algorithms because of the examination of all possible paths rather than the single best path. RESULTS This paper discusses the implementation and performance of checkpoint-based reduced space sequence alignment in the SAM hidden Markov modeling package. Implementation of the checkpoint algorithm reduced memory usage from O(mn) to O (m square root n) with only a 10% slowdown for small m and n, and vast speed-up for the larger values, such as m = n = 2000, that cause excessive paging on a 96 Mbyte workstation. The results are applicable to other types of dynamic programming. AVAILABILITY A World-Wide Web server, as well as information on obtaining the Sequence Alignment and Modeling (SAM) software suite, can be found at http://www.cse.ucsc. edu/research/compbio/sam.html. CONTACT [email protected]
منابع مشابه
Reduced Space Hidden Markov Model Training
1 Abstract 1.1 Motivation Complete forward-backward (Baum-Welch) hidden Markov model training cannot take advantage of the linear space, divide-and-conquer sequence alignment algorithms because of the examination of all possible paths rather than the single best path. This paper discusses the implementation and performance of checkpoint-based reduced space sequence alignment in the SAM Hidden M...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملReduced space hidden Markov model
1 Abstract 1.1 Motivation Complete forward-backward (Baum-Welch) hidden Markov model training cannot take advantage of the linear space, divide-and-conquer sequence alignment algorithms because of the examination of all possible paths rather than the single best path. This paper discusses the implementation and performance of checkpoint-based reduced space sequence alignment in the SAM Hidden M...
متن کاملHidden Markov Models Training Using Population-based Metaheuristics
In this chapter, we consider the issue of Hidden Markov Model (HMM) training. First, HMMs are introduced and then we focus on the particular HMMs training problem. We emphasize the difficulty of this problem and present various criteria that can be considered. Many different adaptations of metaheuristics have already been used but, until now, a few extensive comparisons have been performed on t...
متن کاملOptimizing reduced-space sequence analysis
MOTIVATION Dynamic programming is the core algorithm of sequence comparison, alignment and linear hidden Markov model (HMM) training. For a pair of sequence lengths m and n, the problem can be solved readily in O(mn)time and O(mn)space. The checkpoint algorithm introduced by Grice et al. (CABIOS, 13, 45--53, 1997) runs in O(Lmn)time and O(Lm(L) square root of n)space, where L is a positive inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 14 5 شماره
صفحات -
تاریخ انتشار 1998